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ANOMERIC EFFECT OF RADICALS
B. Giese* and J. Dupuis

Institut flir Organische Chemie und Biochemie
Technische Hochschule Darmstadt

PetersenstraBe 22, D-6100 Darmstadt, Germany

Summary: The glucosyl radical 1 is attacked predominately at the axial position.
This can be explained by an anomeric effect that stabilizes o-radical 5.

Recently we have shown that glucosyl radicals 1 react with acrylonitrile in

a cis addition to give an axial substituted product1). Baldwinz) 3)

4)

, Praly and

Vasella observed similar stereoselectivities with acrylic ester and But;5nD.
These results are surprising because in cyclohexyl radicals 2 trans additions
predominates). To prove whether the axial attack at 1 is caused by an anomeric
effect rel. rates and activation enthalpies for the formation of axial and

equatorial deuterated products 7 and 8 have been measured.
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In reductions of a-glucosyl halides 3 and B-glucosyl chloride 4 with But,SnD
identical mixtures of products 7 and 8 are formed. The ratio of 7:8 varies from
98:2 at -20°C to 82:18 at 90°C (Table I). This means that the axial attack

occurs with 3.9 kcal/mol lower activation enthalpy than the equatorial attack.

Ingold6) has shown that the activation enthalpy of H-abstraction from But3SnH
with alkyl radicals is between 3 and 4 kcal/mol and that the substituent effect
on the rate is very small. Therefore, a 3.9 kcal/mol difference in the transi-

tion states can not be explained by the selectivity of one mn-radical.
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Table I
Reduction of glucosyl halides 3 and 4 with But,SnD
Glucosyl Solvent/ Temperature Product ratio Yield
halide Initiation (°C) 7:10 (%)
3(X=Br) THF/hv =20 98:2 80
3 (X=Br) THF/hv 10 96:4 81
3(X=Br) THF/h v 30 95:5 75
3(X=Br) THF/hv 60 90:10 90
3(X=Br) Toluene/AIBN 90 82:18 86
4 Toluene/AIBN 90 83:17 65
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It is more likely that two interconverting o-radicals 5 and 6 are formed.
The back lobe of the o-orbital in 5 interacts with non-bonded electrons of the
adjacent oxygen. Radom and Schaefer7) have calculated that such an interaction
considerably increases the stability of the hydroxymethyl radical. This stabi-
lizing effect is further supported by the rate of the formation of radicals 5
and 6. Halogen abstraction experiments with tributyltin radicals show that the
more stable a-glucosyl~chloride 3 (X=Cl) cleaves the carbon-chlorine bond with
about the same rate as the éTss stable B-glucosyl chloride 4. Therefore, the

stabilizing anomeric effect in radical 5 should be of the same order as the

anomeric effect of glucosyl chloridess'g). This increases the ratio of 5:6 in
the equilibrium of the radicals. Because the rates of different alkyl radicals
in reactions with ButSnH are very similars) the higher concentration of 5

leads to the predominate formation of 7.
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The minor isomer 8 is either the product of radical 6 or, as Clark10) has
pointed out, the product of attack at the back lobe of radical 5. In the
mannosyl radical 10 this back lobe is shielded by an axial substituent at C-2.
Reactions of a-mannosyl bromide 9 with But3SnD at 90°C show that the axial deu-
terated product 11 is formed with more than 95 % rel. yield. This increase
of the stereoselectivity at 90°C from 4.5 to at least 20 is in accord with an

attack at the back lobe of 5 although it does not exclude the direct reaction
from radical 6 to product 8.
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